

Jet Propulsion Laboratory California Institute of Technology

GECOSTRESS

SIMULATING SBG WITH ECOSTRESS AND EMIT

Dr. Simon J. Hook

(Drs D. Thompson, P. Broderick, R. Green, G. Hulley, K. Cawse-Nicholson) NASA Jet Propulsion Laboratory, California Institute of Technology, USA with contributions from the SBG, ECOSTRESS and EMIT teams

© 2023 California Institute of Technology. Government sponsorship acknowledged.

Outline

- Description of SBG
- Description of ECOSTRESS Instrument
- Description of EMIT Instrument
- Comparison of SBG-TIR with TRISHNA and LSTM
- Comparison of SBG-VSWIR with CHIME and PRISMA
- ECOSTRESS and EMIT Products and Processing
- ECOSTRESS and EMIT for SBG Simulation in Geological Studies

SBG Architecture Description: <u>Two Primary Platforms</u>

•Two vehicles in SSO

- TIR 665 km, 12:30 equatorial crossing time descending node
- VSWIR 632 km, 10:45 local time
- •VSWIR on a NASA spacecraft with launch vehicle contributed or NASA
- •TIR on ASI-spacecraft with ASIprovided launch (VEGA-C) and VNIR camera

- NASA VSWIR
 - FoV: 25.5°
 - Spatial Res: 30 m
 - Swath: 185 km
 - Spectral Res: 10 nm
 - Range: 0.38 2.5 μm
 - Bands: 220

- NASA TIR
 - Spatial Res: 60 m
 - Swath: 935 km
 - Range: 1.6 12 μm
 - Bands: 8
- ASI VNIR
 - Spatial Res: 30 m
 - Range: 665, 834 nm centers
 - Bands: 2

VSWIR-1 on NASA Bus

TIR on ASI Bus

- Science valuation
 - Two-Platform solution allows orbits to utilize optimum observing time coordinate with international efforts
 - VSWIR orbit can be coordinated with CHIME for reduced revisit
 - •TIR orbit can be coordinated with CNES-ISRO TRISHNA and ESA-LSTM for daily revisit
 - ASI contributed VNIR provides full coincidence with NASA TIR and improved performance
- Earliest Launch Readiness Dates:
 - TIR: 2027
 - VSWIR: 2028

SBG TIR Key Instrument Parameters

Key Parameters	
Number of satellites	1
Combined revisit (days)	≤ 3 (different obs. angles)
Nominal Altitude (km)	665
Orbit cycle (days)	3
GSD (nadir/edge of scan) (m)	TIR: ≤60 /93, VNIR: ≤30 /52*
FOV (degrees)	± 34.4
Swath (km)	935
Coverage	Land and Coastal
Day/Night	Day + Night
LTDN	12:30
LWIR bands (8-12 µm)	6
VNIR/SWIR/MWIR	2/0/2
Accuracy (K)	0.5
NeDT (K)	<0.2
Data latency (hours)	<24

* Based on angle will be less when combine with mask

SBG VSWIR Key Instrument Parameters

Key Parameters	SBG-VSWIR		
Number of satellites	1		
Combined revisit (days)	\leq 16		
Nominal Altitude (km)	~620		
GSD (nadir) (m)	30-35		
FOV (degrees)	± 8.1		
Swath (km)	180		
Coverage	Land and Coastal		
Day/Night	Day		
LTDN	~11am		
Spectral range (nm)	380 - 2500		
Spectral sampling (nm)	10		
Signal to Noise, VNIR*	400		
Signal to Noise, SWIR*	250		
Data latency (hours)	<24		

* Typical value, reference observation with equatorial illumination and 25% surface reflectance

ECOSTRESS Project Overview

Salient Features

- Category: 3, Risk Class: D
- 8–12.5 μm radiometer with a 400km swath, 69 x 38 m resolution
- Measure brightness temperatures of Earth in 5 spectral bands
- Launched on SpX-15 on June 29, 2018 .
- Deployed on the ISS on JEM-EFU 10 .
- Baseline Operations: 1 year after 30 days on-orbit checkout .
- Prime Mission Completed August 19, 2019 .
- In 2019 Phase E extended until September 2023 .
- In 2023 Phase E extended until 2029

Original Science Goals

- ECOSTRESS will measure the temperature of plants and use that information to better understand how much water plants need and how they respond to stress via high spatiotemporal resolution thermal infrared measurements of evapotranspiration from the International Space Station (ISS).
- ECOSTRESS will:
 - Identify critical thresholds of water use and water stress in critical plant ٠ biomes
 - Detect the timing, location, and predictive factors leading to plant water uptake decline and/or cessation over the diurnal cycle
 - Measure agricultural water consumptive use over the contiguous United ٠ States (CONUS) at spatiotemporal scales applicable to improve drought estimation accuracy

ISS JEM-EF

ECOSTRESS

6/15/23

ECOSTRESS Instrument and Properties

Two full aperture onboard blackbodies used for calibration 69 x 76 m ground sampling (resampled) 384 km swath width (400km ISS altitude) **ECOSTRESS Imaging Radiometer Elements**

- Three mirror Korsch Telescope + Scanner + built-in vacuum enclosure
 - All aluminum and gold coated
 - Scan (double sided planar)
 - M1 (asphere)
 - M2 (y-decentered, ashpere)
 - M3 (y-decentered, asphere)
 - Flat fold mirror (planar)

FPA assembly

- Butcher block filter array (holds up to 6 filters)
- Detector (HgCdTe)
 - 256 x 16 x 8 format
 - 40 µm pixel size

Key ECOSTRESS Properties

F-number	F/2.1			
Cross-track FOV	51 [°]			
IFOV (cross-track x along-track)	190 x 173 μrads			
Focal length	420 mm			
Entrance pupil aperture	200 mm			
Spectral range	8.1 to 12.4 μm			
Spectral sampling	5 bands			

EMIT Project Overview

Salient Features

- Risk Class: C
- 380-2500 nm imaging spectrometer with 10 nm spectral sampling
- 75km swath, 60 m sampling
- 98% spectral uniformity
- Launched on SpX-25 on July 15, 2022
- Deployed on the ISS on ELC FRAM
- Baseline Operations: 1 year after 30 days on-orbit checkout
- Prime Mission in progress
- Extension possible

Original Science Goals

1. Constrain the sign and magnitude of dust-related RF at regional and global scales. EMIT achieves this objective by acquiring, validating and delivering updates of surface mineralogy used to initialize Earth System Models.

2. Predict the increase or decrease of available dust sources under future climate scenarios.

EMIT achieves this objective by initializing Earth System Model forecast models with the mineralogy of soils exposed within at-risk lands bordering arid dust source regions.

EMIT Instrument and Properties

Comparison of LSTM, TRISHNA and SBG-TIR

	LSTM	TRISHNA	SBG-TIR	
Number of satellites	2	1	1	
Combined revisit (days)	2 (same obs. angles)	\leq 3 (different obs. angles)	\leq 3 (same obs. angles)	
Nominal Altitude (km)	649	761	665	
Orbit cycle (days)	4 (for each sat.)	8	3	
GSD (nadir/edge of scan) (m)	37/50	57/60	TIR: ≤60 /93, VNIR: ≤30 /52*	
FOV (degrees)	± 28	± 34	± 34.4	
Swath (km)	700	1000	935	
Coverage	Land and Coastal	Land and Coastal	Land and Coastal	
Day/Night	Day + Night	Day + Night	Day + Night	
LTDN	12:30	13:00	12:30	
LWIR bands (8-12 µm)	5	4	6	
VNIR/SWIR/MWIR	4/2/0	5/2/0	2/0/2	
Accuracy (K)	0.5	0.5	0.5	
NeDT (K)	<0.15	<0.2	<0.2	
Data latency (hours)	6-12	12 (demo)	<24	

* Based on angle for SBG, for other instruments based on combination of angle and mask

NASA

Comparison of SBG-VSWIR, CHIME and PRISMA-NG

	SBG-VSWIR	CHIME	PRISMA-NG	
Number of satellites	1	2	2	
Combined revisit (days)	≤ 16	10-12.5	3-6 days (pointing capability ± 40°)	
Nominal Altitude (km)	~620 632			
GSD (nadir) (m)	30-35	30	hyperspctral instrument: STRIPMAP ≤ 30 m SPOTLIGHT≤ 10 m Pancromatic STRIPMAP ≤ 5 m SPOTLIGHT≤ 2.5 m	
FOV (degrees)	± 8.1	± 5.8		
Swath (km)	180	~130	STRIPMAP ≥30 km up to 90 km (mosaic multiple images) SPOTLIGHT ≥30 km up to 60 km (mosaic multiple images)	
Coverage	Land and Coastal	Land	Land	
Day/Night	Day	Day	Day	
LTDN	~11am	10:30-11:30 am	10:30	
Spectral range (nm)	380 - 2500	400-2500	400-2500	
Spectral sampling (nm)	10	<10	<10	
Signal to Noise, VNIR*	400		>200	
Signal to Noise, SWIR*	250		>100	

ECOSTRESS Data Processing Flow

ECOSTRESS Data Analysis

Soil Moisture

Evapotranspiration Processing Workflow

Surface Temperature and Evapotranspiration Error Budgets

EMIT Data Processing Flow

EMIT Data Analysis

L4: CESM, GISS Model Runs

Uncertainties distributed for all products

Railroad Valley validation experiment

Example EMIT Retrievals

Mineral features measured with directional surface reflectance

ECOSTRESS vs SBG For Geologic Studies

SBG Mid and TIR Band Positions

SBG-TIR Band Positions

SBG-TIR Band Positions

SBG Mineral Mapping

The Rock Cycle : Three Main Types of Rocks

By combining SBG-VSWIR and SBG-TIR can map key rock forming minerals and associated rock types

Mapping Weight Percent Silica with MASTER TIR Airborne Data

80

50

Mapping Weight Percent Silica with HyTES Airborne Data

ECOlib spectra solid igneous rocks

ECOSTRESS decorrelation stretch – Hiller mountains, NV

Bands 4-3-2 as RGB

Mapping Weight Percent Silica with ECOSTRESS Data

Final Band Positions

MRD - 2023-04-26-UPDATE

Band # Center Waveler	Center Wavelength	Spectral Width (FWHM)	Tolerance	Tolerance Spectral Width (±nm)	Knowledge Center Wavelength (±nm)	Knowledge Spectral Width (±nm)	Accuracy	NEdT (Kelvin)	Range
	(µm)	(nm)	Center Wavelength (± nm)				(Kelvin)		(Kelvin)
MIR-1	3.98	20 (TBC)	50	10	10	10	≤3@750	≤0.3@750	700-1200
MIR-2	4.8	150 (TBC)	100	50	20	20	≤1@450	≤0.2@450	400-800
TIR-1	8.32	300 (TBC)	100	50	20	20	≤0.5@275	≤0.2@275	200-500
TIR-2	8.63	300 (TBC)	100	50	20	20	≤0.5@275	≤0.2@275	200-500
TIR-3	9.07	300 (TBC)	100	50	20	20	≤0.5@275	≤0.2@275	200-500
TIR-4	10.30	300 (TBC)	50	50	20	20	≤0.5@275	≤0.2@275	200-500
TIR-5	11.35	500 (TBC)	100	50	20	20	≤0.5@275	≤0.2@275	200-500
TIR-6	12.05	500 (TBC)	100	50	20	20	≤0.5@275	≤0.2@275	200-500

Final band positions and tolerances for SBG-TIR bands

EMIT For Geologic Studies

Projection to Map-Space

 Generate three dimensional look up tables of relative scene position and scene source, based on L1B geospatial coordinates and propagated estimates of uncertainty

Vegetation Adjustment

Vegetation Adjustment

Vegetation Adjustment

Iron Oxides and Minerals with 2um Features

Dominant Mineral Abundances - Iron Oxides

Dominant Mineral Abundances - 2µm

Iron Oxides and Minerals with 2um Features

Case Study: SO₂ – SO₄ Kilauea, HI

Using HyTES Data

- apparent decreases in SO₂ and sulfate (SO₄) aerosol column density with increasing distance from vent
- spectrum A indicates stronger SO₂ absorption (yellow oval) than Spectrum B and an absence of SO₄ features (red oval)
- HyTES TIR data are consistent with AVIRIS VSWIR detections of SO₄

Case Study: SO₂ – SO₄ Kilauea, HI

Baseline (5-band) Band Positions: Unable to Detect SO₄ (red oval)

Case Study: SO₂ – SO₄ Kilauea, HI

Modified (6-band) Band Positions: Confirm SO₄ (red oval)

Case Study: Airborne Volcanic Ash

Using Laboratory Data

- volcanic ash sieved into five size fractions (Williams and Ramsey, 2019)
- TIR spectra acquired and resampled to ASTER, SBG (5band) and SBG (6-band) configurations
 - both composition and particle size are retrieved more accurately with the 6-band configuration
 - spectral shapes better represent the laboratory data especially at wavelengths longer than 10 µm

⁽Thompson et al., 2023)

Summary

- SBG will include a VSWIR Imaging Spectrometer and a TIR Multispectral Imager
- Several areas lend themselves to combined use of VSWIR and TIR data, e.g. geological studies, ecosystem studies, cryospheric studies.
- ECOSTRESS and EMIT provide an excellent set of data to simulate SBG TIR and VSWIR data
- ECOSTRESS and EMIT data can be used to simulate other similar datasets planned for later in the decade such as LSTM, TRISHNA, CHIME, PRISMA-NG
- Airborne data from AVIRIS/AV-NG and HyTES/MASTER can also be used to simulate SBG
- Started to evaluate use of ECOSTRESS and EMIT data for geological mapping in the Lake Mead area, Nevada USA

Questions?