

Designing new ultra high resolution Sea Surface Temperature products in coastal areas for the future TRISHNA mission

Laura Orgambide⁽¹⁾, Emmanuelle Autret⁽¹⁾, Elea Paul⁽¹⁾,

Jean-François Piollé (1), Stéphane Saux-Picart (2), P. Gamet (3)

(1) Ifremer, Univ. Brest, CNRS, IRD, Laboratoire d'Oceanographie Physique et Spatiale (LOPS), IUEM, Brest, France, (2) CNRM UMR3589, Météo-France – CNRS, Centre d'Etudes en Météorologie Satellitaire, France, (3) CNES, Toulouse, France

1. Introduction

Sea Surface Temperature interests and existing products

Essential Climate Variable (ECV)

marine biodiversity

weather and oceanographic forecasting systems

fishery

offshore activities monitoring

water quality monitoring Sea Surface

Temperature

Suffers notoriously quality in coastal area

1-km resolution products

VIIRS (Suomi-NPP) AVHRR (METOP) SLSTR (Sentinel-3)

GHRSST *

study mesoscale and sub-mesocale features

*GHRRST: Group for High-Resolution Sea Surface Temperature 1

1. Introduction

CALISTA product for the future TRISHNA mission

High spatial resolution thermal data

opernicus LSTM

SBG

CALISTA product

New coastal applications

water quality monitoring

aquaculture

offshore activities

A high spatial resolution SST product

split-window algorithm

calibrate and validate the estimated SST product with GHRSST SST products and/or *insitu measurements*

*CALISTA : Coastal 100m resolution Sea Surface Temperature from satellite infrared sensors

Input data and area of interest

High spatial resolution thermal data

2. Data

ECOSTRESS

- → downloading 35 To
- → over Iberia Biscay Irish (IBI) Zone
- → from 2019 to present

- LANDSAT 9 TIRS
- → downloading in progress ...
- → over Iberia Biscay Irish (IBI) Zone
- → from 2021 to present

- \rightarrow 3 thermal infrared bands in the 8-12.5 µm
- → 70 m spatial resolution

- \rightarrow 2 thermal infrared bands in the 10.6-12.5 µm
- → 60 m spatial resolution

GHRSST SST products for calibration and validation

 \sim 1 km resolution

Iberia Biscay Irish (IBI) zone

Figure 1 - Sea Surface Temperature MYP model over Iberia Biscay Irish (IBI) zone. Source: E.U. Copernicus Marine Service Information.

SST estimation method with 4 split-window equations

3. Method

4 split-window algorithm tested:

estimated_SST = $(a \times BT8 + b \times (sec-1) + c \times dBT + d + e \times (sec-1))$

estimated_SST = $(a + b \times (sec-1)) \times BT8 + (c + d \times (sec-1)) \times dBT + e + f \times (sec-1)$

estimated_SST = $(a + b \times (sec-1)) \times BT10 + (c + d \times (sec-1)) \times dBT + e + f \times (sec-1))$

estimated_SST = $(a + b \times (sec-1)) \times BT10 + (c + d \times (sec-1)) \times dBT8 + e + f \times (sec-1)$

where dBT = BT10 - BT12; dBT8 = BT8 - BT12 and where sec is the secante of zenithal satellite view.

4 equations x (3 reference sensors (VIIRS, SLSTR, AVHRR) + RTTOV) = 16 combinations to assess

SST estimation method with 4 split-window equations

3. Method

4 split-window algorithm tested:

estimated SST = $(a \times BT8 + b \times (sec-1) + c \times dBT + d + e \times (sec-1))$

estimated SST = $(a + b \times (sec-1)) \times BT8 + (c + d \times (sec-1)) \times dBT + e + f \times (sec-1)$

estimated SST = $(a + b \times (sec-1)) \times BT10 + (c + d \times (sec-1)) \times dBT + e + f \times (sec-1)$

estimated_SST = $(a + b \times (sec-1)) \times BT10 + (c + d \times (sec-1)) \times dBT8 + e + f \times (sec-1)$

where dBT = BT10 - BT12; dBT8 = BT8 - BT12 and where sec is the secante of zenithal satellite view.

4 equations x (3 reference sensors (VIIRS, SLSTR, AVHRR) + RTTOV) = 16 combinations to assess

3. Method

Match-up database for algorithm definition

Figure 2 - Example of match-up between ECOSTRESS and VIIRS. Source: Laura Orgambide, CALISTA project.

→ masking process reveals quality defect in products (see discussion)

→ match-up database requires to select data carefully (see 3. Data)

3. Method

Selecting representative oceanographic database

- → 168 scenes selected with visual quality assessment
- around 3 millions of match-ups
- evenly distributed
 between 280 K to 300 K
 and day/night flag
- most of match-ups have a time delta inferior to more or less 30 minutes

Number of match-ups with ECOSTRESS according to SST values at night

Sea Surface Temperature (K)

7

4. First results

Land Surface Temperature product from NASA

4. First results

Validation of ECOSTRESS estimated Sea Surface Temperature (SST)

→ NLCSST equation ajusted with Sentinel-3 data was selected.

→ SST bias ~ 0 K when compared to the Sentinel-3 validation dataset

→ SST bias ~ -0.2 K when compared to the METOP or to the VIIRS validation dataset

Sea Surface Temperature retrievals from Ifremer CALISTA product

Difference between ECOSTRESS estimated SST and GHRSST SST by sensor Sensor

The estimation SST with ECOSTRESS images is computed with NLCSST split-window algorithm and adjusted with Sentinel-3 SST product.

presence of outliers

masking problems and image noise

validation off the coast, not for \rightarrow pixels close to the coast (*in-situ* validation required)

3

 \rightarrow

4. First results

SST estimation from RTTOV method

Relation between residuals and latitude

Relation between residuals and longitude

Observations:

→ underestimation of cloudy pixels at day and night time

→ cold fronts sometimes detected as cloudy pixels

Challenges and solutions:

→ selection of ECOSTRESS dataset by visual inspection to avoid clouds in the match-up database

using external data such as SEVIRI cloud mask and work on cloud masking method

5. Discussion

LAND MASK ERRORS

Quality assessment of ECOSTRESS land mask

ECOSTRESS Land mask on 2020-08-15 08:54:26 (UTC)

APPLY SHORELINE SHAPEFILE

the SHOM

Source: SHOM Land-Sea limit available on Géoportail.

REMAINING **CHALLENGES**

produced by the European Environment Agency

Geolocation

Mapping tidal flats

ECOSTRESS Land mask on 2022-08-09 12:24:46 (UTC)

Sea-ice mapping

DYNAMIC LAND AND SEA-ICE MASK **IS NEEDED**

*SHOM : French Navy Hydrographic and Oceanographic Service 12

5. Conclusion

Perspectives and future work

improve the representativeness and the independence of the dataset

laura.orgambide@ifremer.fr