International Workshop on High-Resolution Thermal EO

Airborne thermal infrared data for the estimation of evapotranspiration and crop water use

Corbari¹ C., Paciolla¹ N., Hu² T., Ronellenfitsch² F.K., Schlerf² M. Bossung² C., Crisafulli³ V., Ceppi¹ A., Feki¹ M., Llorens³ R., Skokovic³ D., Al Bitar⁴ A., Mallick² K., Sobrino³ J., Mancini¹ M.

Politecnico di Milano - Milan (Italy)
 Luxembourg Institute of Science and Technology – Belvaux (Luxembourg)
 Universitat de Valencia – Valencia (Spain)
 Centre d'Etudes Spatiales de la Biosphère (CESBIO) - Toulouse (France)

chiara.corbari@polimi.it

Objectives

To investigate the variability of evapotranspiration (ET) by integrating very high spatial resolution (1 to 4 m) thermal infrared (TIR) data from airborne measurements and visible to near infrared data from Planet satellite with a numerical water-energy balance model, a simplified energy balance model and a diagnostic surface energy balance model.

To calibrate/validate the models against eddy covariance data

- 3
- To evaluate the **stress conditions** and the **effect of irrigation** considering different ET and LST spatial resolution
- 4 To test the feasibility of estimating soil moisture by combining the high spatial resolution thermal infrared (TIR) and the numerical water-energy balance model FEST-EWB

An intensive airborne campaign was organized in the summer of 2022 for three consecutive days in July in central Italy.

Burana Irrigation Consortium – survey campaign areas

Pear tree fields – time continuous measurements

Eddy covariance station

A Bowen ratio closure correction was applied (Twine eat., 2010) to the EC data before the comparison

Pear fields	Reggianini	Mazzoni
Area	1.02 ha	2.4 ha
Irrigation system	Sprinkler	Drip
Irrigation volume	570 mm	335 mm
Montoring setup	Flux tower + SM probes	SM probes

Surface soil measurements and eddy covariance

Airborne survey

Planning of the Burana airborne survey

Segment	Duration (min.)
Airport – Modena transit	15
Modena survey at 4 m	14
Descent from 2900 m to 700 m	5
Diamante survey at 1 m	7
Modena-Concordia transit & ascent from 700 m to 2900 m	15
Concordia survey at 4 m	38
Descent from 2900 m to 700 m	5
Mazzoni 1m survey	13
Concordia – Airport transit	15
Total time per survey	127
Total survey time (30 hrs)	1800
Number of surveys	14.2

Hyper-Cam-LW specifications

Parameter	Unit	Hyper-Cam-LW
Spectral Range	μm	7.7 - 12
Spectral Resolution	cm-1	0.25 to 150 (user adjustable)
Image Format	¥2	320 x 256 pixels
1.0	Degrees	6.4 x 5.1 (nominal)
Field of View	Degrees	25.6 x 20.4 (0.25X telescope)
Typical NESR	nW/cm2srcm1	< 20
Radiometric Accuracy	к	<1

64 bands of TIR aquisition

Hyper-Cam on motion compensated and stabilised airborne platform with GPS/INS unit

Overview of acquired airborne TIR data

Dute	Start Time (UTC)	Diamante 1m	Modena 4m	Concordia 4m	Mazzoni 1m
13.07.22	07;45	Carls problem	2		
	08:25		mosaicked		
	08:55	6		mosaicked	
	09:30		1		mosaicked
	11:27	mosaicked			
	32:04		mosaiched		
	12:27			mosaicked	
	13:23		2		mosaicked
	15:02	mosaicked			
	15:29		mosaicked		
	15:51			mosaicked	
1-01	36:46		l) (h)		mesaicked
\$4.07.22	07:40	mosaicked			
	08:04		mosaicked		
	08-25			researched	
	09:13				Citil and the
	1048	mosaicked	2. JO		
0	11:08		motalcked		
	11:29			mosaicked	
	17:20				mosaicked
	34:06	mosaicked			
	15:09		mosaicked		
	15/29	-	5	mosaicked	
	16:14				mosaicked
15.07.22	06:59	mosaicked	S		
	07:26		mosaicked	and the second second	
	07:48		2000	mosaicked	
	08:32		1		mosaicked
	30(31	mesatked	S. company		The second second
	30:53		mosaicked		
	11:18		100000000000000000000000000000000000000	mesakked	
	12:06	1			mosaicked
	13(1)	mosaicked	1	1	
	13:54		Grifs sine time	TOCOLOGICAL INCOME.	And Distantional

Airborne LST and emissivity retrieval

Atmospheric correction: MODTRAN + ERA5 atmospheric profiles

Radiance before and after atmospheric correction

TES schematic flowchart

0.95

0.8

0.8

0.75

0.65

0.55

Airborne LST validation

Site	Surface type	Measurement devices	Variables	Sample size
Mazzoni-B	Wheat, melon, soil, grass, plastic	Apogee	Ts	463
Mazzoni-B	Wheat, melon, bare soil	Gmel	Ts ε (6 channels)	58
Quarry Lake	Water, lotus	Pt-100, IR- thermometer	Ts	18

Time lag between aircraft overpass and ground measurements was typically between 3 and 36 minutes.

High resolution vegetation images **at 3.7 m** have been employed, from **PlanetScope sensors** on board cubesat satellites. These sensors have 8 spectral bands (red edge, red, green, green I, yellow, blue, coastal blue and near infra-red), which allowed to retrieve vegetation indices, as NDVI, vegetation fraction and Leaf area index.

vegetation fraction (Modena and Diamante)

vegetation fraction (Concordia and Mazzoni)

10 km

Evapotranspiration models

STIC analytical model

resolves evaporative fraction, aerodynamic temperature, and aerodynamic and surface conductances simultaneouly under an analytical framework through injecting radiative surface temperature into the Penman-Monteith (PM) equation

FESTresidual model

Corbari et al., 2015 (Jh) LE=Rn-H-G Corbari & Mancini, 2014 (JHM) Corbari et al., 2014 (HSJ)

A SEB model that parameterize conductances to retrieve the energy fluxes, LE is the residual term of the energy budget

S-SEBI model

instantaneous evaporative fraction

$$\Lambda = \frac{\lambda E}{\lambda E + H} = \frac{\lambda E}{R_{a} - 0}$$
$$\Lambda = \frac{T_{H} - T_{0}}{T_{H} - T_{\lambda E}}$$

temperatures corresponding to dry and wet conditions

Fig. 2. Schematic representation of the relationship between surface reflectance and temperature together with the basic principles of S-SEBI.

Roerink et al. (2000)

ET estimates for Modena 4m LST

Zoom to the eddy station area: ET estimates for Modena 4m LST

Energy fluxes comparison at eddy covariance station

Not-consistent performances **across different hours of the day** (highest differences at higher LST)

W/m2		FESTresidual	STIC	S-SEBI
LE -				
Modena	RMSE	50.2	109.5	60.9
	BIAS	32.1	-100.4	-39.7

Abs Difference of ET estimates for Modena 4m

Mean abs (pixel diff) =113.4 W/m2 Mean (pixel diff) =15,4 W/m2

Mean abs (pixel diff) =93.8 W/m2 Mean (pixel diff) =13.9 W/m2 Not-consistent performances **across different land surface types**, vegetation fraction

Average over the 7 flights

-non-parameterized structure of STIC, with aerodynamic and surface resistances expressed through physical equations
-FESTresidual the calculation of aerodynamic resistance relies on wind speed
-S-SEBI small areas with difficult identification of drywet pixel

ET estimates and vegetation fraction

ET estimates for Diamante 1m LST

Effect of irrigation on the water and energy fluxes

LST vegetated=40,9 °C 6°C difference LST bare soil/grass=46,8 °C

LE vegetated=330 W/m2 LE bare soil/grass=93,2 W/m2

Micro-sprinkler irrigation

14 July @ 14:06 UTC

Irrigation is

Difference of ET estimates for Concordia 4m

Mean (pixel diff) =96.3 W/m2

Mean (pixel diff) =88,5 W/m2

Mean (pixel diff) =19.3 W/m2

2000

Effect of irrigation on the water and energy fluxes for Mazzoni 1m LST

Water stress conditions (Diamante 1m)

Water stress metric = fraction of actual ET to Allen et al. (1998) reference ET

0 maximum stress
(full stomatal
closure)
1 for non-stressed
vegetation (fully
transpiring).

The energy-water balance modeling

Can we estimate SM from satellite LST and a water-energy balance model? (Concordia 4m)

Can we estimate SM from satellite LST and a water-energy balance model? (Diamante 1m)

Conclusions

- We investigated the diurnal and spatial patterns of evapotranspiration variability with three numerical models based on different modelling hypothesis
- Differences and similarities in ET estimates have been analysed for different SM conditions and crop vegetation fraction, and have been compared to eddy covariance measurements for accuracy evaluation considering instantaneous estimates: different impact factors influencing the model performances were investigated, including SWC (irrigated/not irrigated), land cover cover, and FVC
- We show the influence of irrigation technique on LST and ET flux dynamic and spatial variability as well as on the impact on the water stress evolution
- The potentiality of estimating soil moisture at high spatial resolution by integrating airborne LST data into a coupled water-energy balance model