

EarthDaily agro

Dr. Arnaud Quesney, Dr. Aubin Allies, Dr. Harold Clenet*, Alexis Durand, Caroline Gevaert, Bevan Glynn, Dr. Nicolas Karasiak, Dr. Clément Peyrard, Tatiana Dias Tardelli Uehara, Luisa Walsh, Guillaume Huby, Cécile Tartarin & the EarthDaily Agro teams

Introducing the EarthDaily Constellation, a scientific-grade Earth observation mission with daily revisit time

h.clenet@geosys.com

EarthDaily Agro

- EarthDaily Analytics (EDA) is a vertically-integrated software and analytics space company developing world-first technologies in data services, satellite processing, ML and actionable insights. Its subsidiary EarthDaily Agro (formerly Geosys) has over 35 years of experience in satellite and weather data agricultural analysis delivering services and expertise in over 50 countries.
- **EarthDaily Agro mission** is to help professionals in agriculture and natural resources management make better decisions using information and geographic technologies, and the latest results in agronomic research.
- **Customer portfolio** spans all major sectors, such as crop insurance, agriculture lending, commodities, precision agriculture, food and feed processing, and crop consulting, as well as to governments and international organizations.

EarthDaily Agro office's locations

Mission timeline

Space segment details

Number of satellites	10 (9 + 1 in-orbit spare)		
Launch period	Q1-Q2 2024		
Spacecraft	Arrow bus from Airbus		
Design life	10 years		
Orbit	Sun-synchronous, 10:30 AM local time passover		
Orbit control	Precisely maintained for consistent viewing over mission life		
Revisit	1-day, daily coverage of ~100% of Earth's landmass		
	<12h latency available		
Spacecraft mass	200Kg (total)		
	74kg (payload)		
Swath	240 km		
Altitude	~630 km		
Viewing angle	Nadir (always)		
Delivery method	Cloud distribution, API-first approach		

EarthDaily Constellation

EarthDaily Constellation will be deployed in early 2024 and will utilize 22 Spectral bands curated for agribusiness.

S - Sentinel L - Landsat

G - EarthDaily

Characteristics of the 22 bands

Core Vegetation

Monitor vegetation status (vigor, phenology, diseases), yield potential and productivity of crops, detect the changes

Advanced vegetation

Monitor events such as flowering and diseases detection. Improved biophysical variables monitoring.

Soil Content

Soil composition and health. Monitor carbon content and soil degradation. Help making decisions around soil management practices.

Atmosphere

Enhance data quality and usability by correcting atmosphere effects, water vapor, aerosol, cloud haze. Ensuring actionable and measurable insights.

Water

Monitor plants water stress and availability of water resources. Help manage irrigations strategies when combined with weather information.

Characteristics of the 22 bands

EarthDaily Simulated dataset

Dataset to be representative of future EDC data

- \rightarrow Used actual observations from available sensors
- \rightarrow Data fusion and spatio-temporal resampling to fit EDC specs
- \rightarrow Cloud masking to reflect realistic coverage over time

Spectral Bands	Sentinel-2 (SRE)	Venus (SRE)	Landsat8	MODIS	ED equivalent
Blue	B02 (10m)	B03 (5m)	B2 (30m)	Х	B02
Green	B03 (10m)	B04 (5m)	B3 (30m)	х	B04
Yellow	х	B05 (5m)	х	х	B05
Red	B04 (10m)	B07 (5m)	B4 (30m)	х	B06
Red Edge 1	B05 (20m)	B08 (5m)	х	х	B07
Red Edge 2	B06 (20m)	B09 (5m)	х	х	B08
Red Edge 3	B07 (20m)	B10 (5m)	х	х	B09
NIR	B08 (10m)	B11 (5m)	B5 (30m)	х	B10
SWIR	B11 (20m)	х	B6 (30m)	х	B15
TIR	Х	Х	B10 (30m)	MOD11A1 (1km)	B22 (120m)

EarthDaily Simulated dataset

Bands available: Blue - 5m Green - 5m Yellow - 10m Red - 5m Red Edge 1 - 10m Red Edge 2 - 10m Red Edge 3 - 10m NIR - 5m SWIR - 95m Land Surface Temperature - 120m

<u>**Time & Region:**</u> September 3rd 2018 to August 31st 2020 Toulouse, SUDOUE CalVal area – France

Access to demo data will be available:

Internet connection, Python environment to access Azure blobstorage + given credentials

Results on irrigation events detection from TIR

Study site

Methodology

Ts-VI Triangle method (Goward et al., 1985) \rightarrow parametrization proposed by Jiang and Islam (1999) with fractional vegetation cover (Fr) as proposed by Tang et al. (2010). \rightarrow Fr is estimated from NDVI using the formula proposed by Carlson and Ripley (1997). Weather data from ERA5 Land.

 $Fr = (NDVI-NDVI_{min}/NDVI_{max}-NDVI_{min})^2$

Figure from Tang et al. (2010) Methodology Jiang and Islam (1999), Allies (2018)

Results on irrigation events detection from TIR

Study site

Methodology

Evolution of the evaporative fraction on the SUDOUE Venus site

Results on irrigation events detection from TIR

Monitoring EF over season for 2 plots

 \rightarrow Abrupt increases can be detected \rightarrow Spatial correlation within fields, potentially associated to pivot for irrigated corn field

Data & Analytics distribution

- Dr Harold CLENET Scientific Lead, Data Science team <u>h.clenet@geosys.com</u>
- Anne DUBOIS R&D partners and funded projects Lead <u>a.dubois@geosys.com</u>

Thank You

www.EarthDailyAgro.com