Infrared Emissivity Estimation from VIS-NIR Reflectances by Neural Network Learning : Benefit to LST Estimation.

<u>Vincent RIVALLAND*</u> (CNRS/CESBIO, Toulouse, France) Alexandre NEYRET (*internship* CESBIO/ISAE school, Toulouse, France) Simon NATIVEL (*contract* CESBIO/ONERA, Toulouse, France - now ACRI-ST) Albert OLIOSO (INRAE, Avignon, France) Thomas VIDAL (ACRI-ST, Toulouse, France) Xavier BRIOTTET (ONERA, DOTA, Toulouse, France) Jean-Louis ROUJEAN (CNRS/CESBIO, Toulouse, France)

*e-mail: vincent.rivalland@cnrs.fr

- Emissivity is inseparable from the Ts estimation
- Need accurate emissivities for accurate Ts

TRISHNA NeDT = 0.2K ΔLST<0.2K => ΔLSE<0.01 * * Qin et al., IJRS (2001) value for $\lambda = 10 - 12 \mu m$

- Emissivity is difficult to measure in laboratory and quite impossible in field
- Part of the ill-posed problem to estimate LST when multi-bands

Work context => TRISHNA mission (CNES/ISRO cooperation):

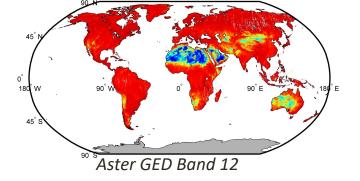
□4 thermal bands [8.65, 9.0, 10.6, 11.6] μ

Global context and RS products

Nowadays, emissivity for remote sensing approach appears to be a well known parameter...

- ASTER Global Emissivity Database
- MODIS MOD21 Emissivity Product
- Spectral libraries

NASA/JPL/USGS products



However, there is still probably room for improvement. $LSE_{\lambda} may varies over time,$ with humidity of materials,

with spectral band, view and solar angle...

Solve emissivity to Ts estimation problem

If unique thermal band :

- Classification Maps and Tables
- Adapt global maps from multi-band
- Function of Vegetation Indices (VIS-NIR bands)

If multi-thermal band (≥3) :

• <u>Simultaneous</u> **Temperature and Emissivity Separation**

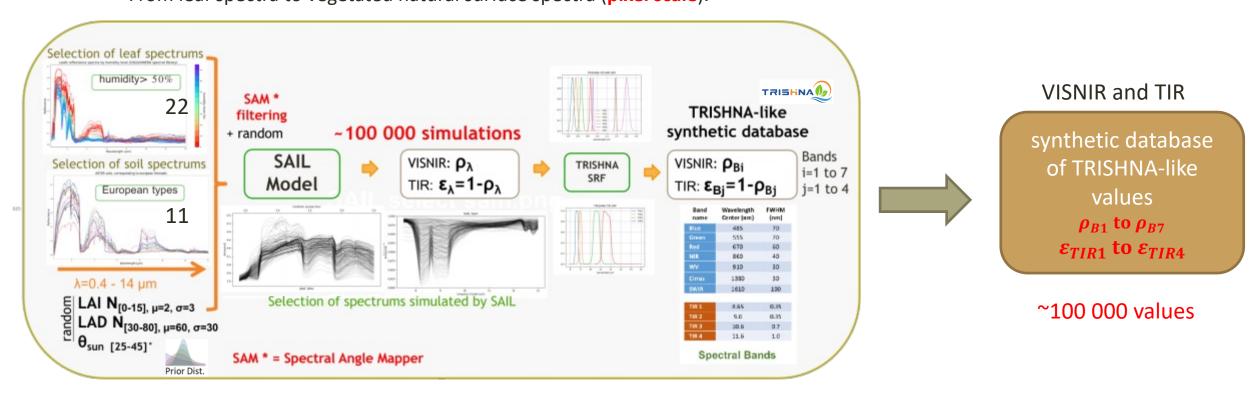
(Gillespie et al, 1999, Vidal et al. 2022)

Try hybrid...

A- Development of a synthetic TRISHNA-like database

 1^{st} : Build a random synthetic database of continuous spectra [0.4-14 μm]

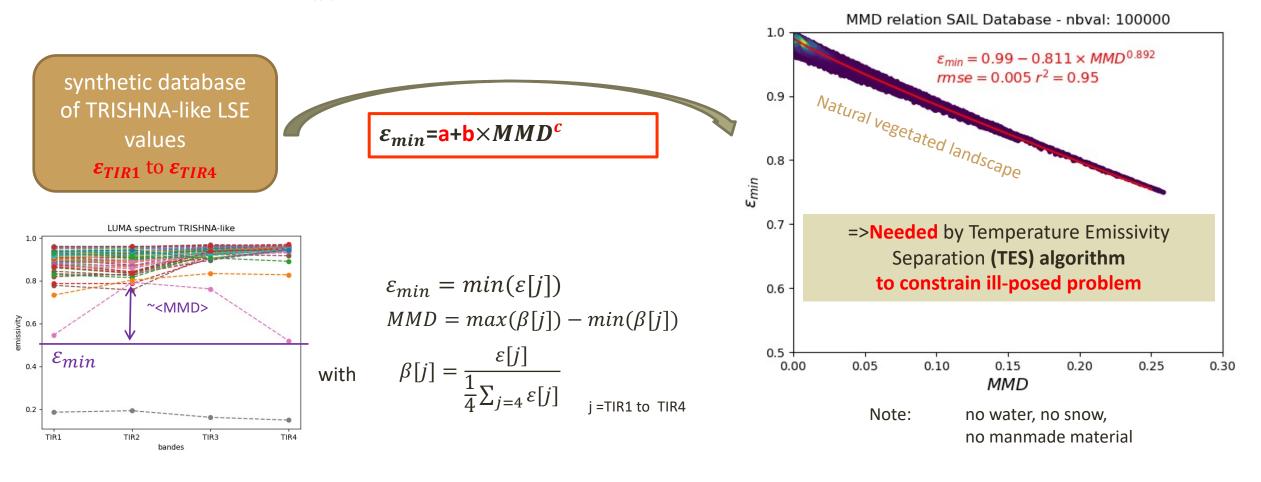
> As representative as possible of natural covers (forest, crop, prairie, bare soil...).
 => From leaf spectra to vegetated natural surface spectra (pixel scale).



 2^{nd} : Convert continuous spectra to TRISHNA-like reflectances (ρ) and emissivities ($\varepsilon = 1 - \rho$) based on the TRISHNA-Spectral Response Functions (*SRF*)

A-1 Learn MMD relation for TES application

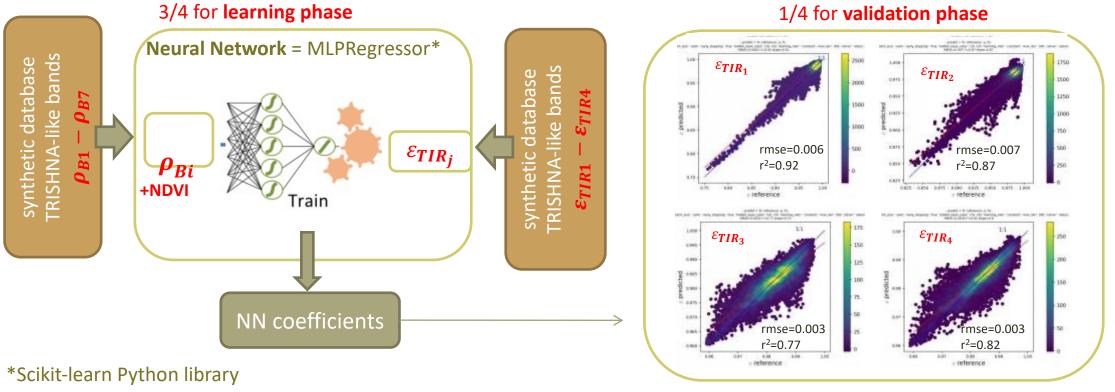
Determination of coefficients [a,b,c] of the relationship between the minimum emissivity (ε_{min}) and the Maximum-Minimum Difference (MMD)



A-2 Learn empirical relations between $\rho_{VIS-NIR}$ and ϵ_{TIR}

Hypothesis: suppose visible-nir reflectances contain information to determine thermal LSE

- Use of the synthetic TRISHNA-like database for relationship learning
- Use of a Neural Network approach



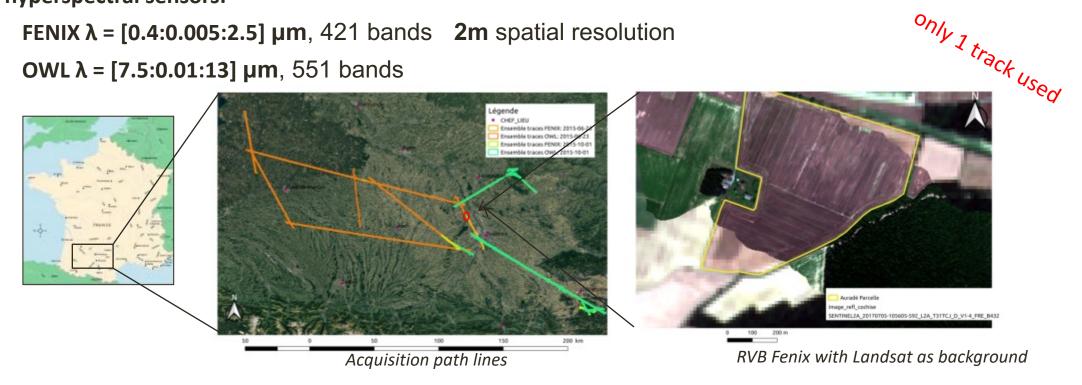
2023-05-12

Application: Airborne Hyperspectral Data, AHSPECT 2015 Campaign

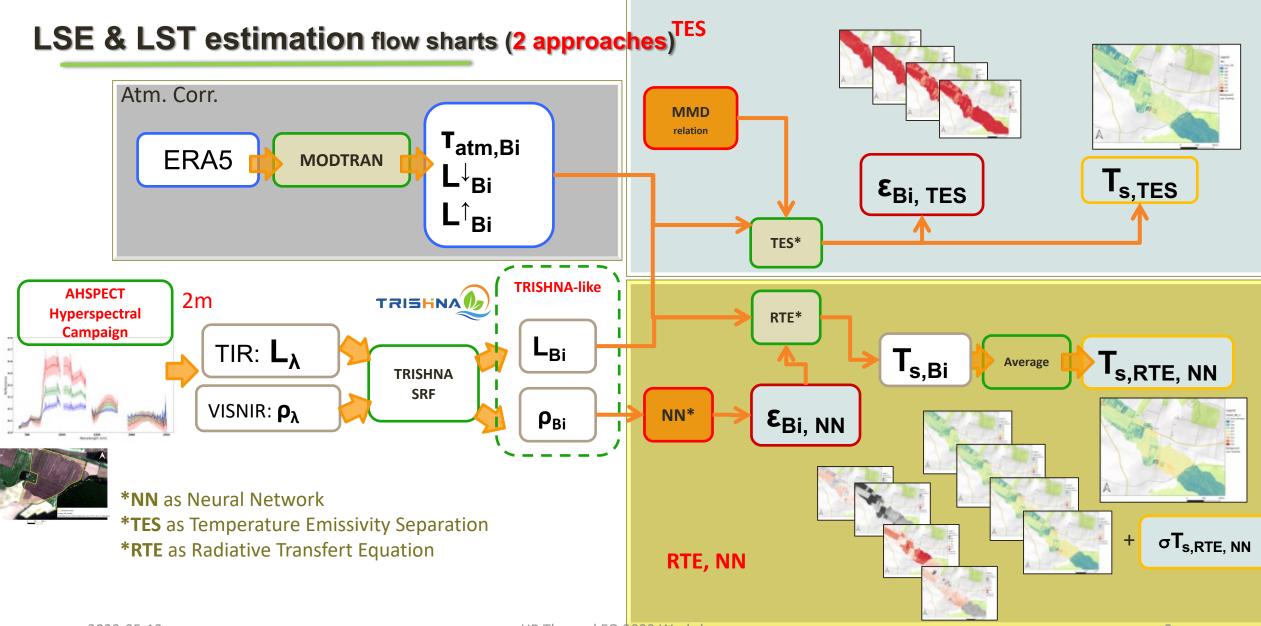
(ESA - EUFAR - CNRM)

- June 23 2015 / Sunny and warm day
- 2 hyperspectral sensors:

FENIX λ = [0.4:0.005:2.5] μ m, 421 bands 2m spatial resolution **OWL λ** = **[7.5:0.01:13]** μm, 551 bands



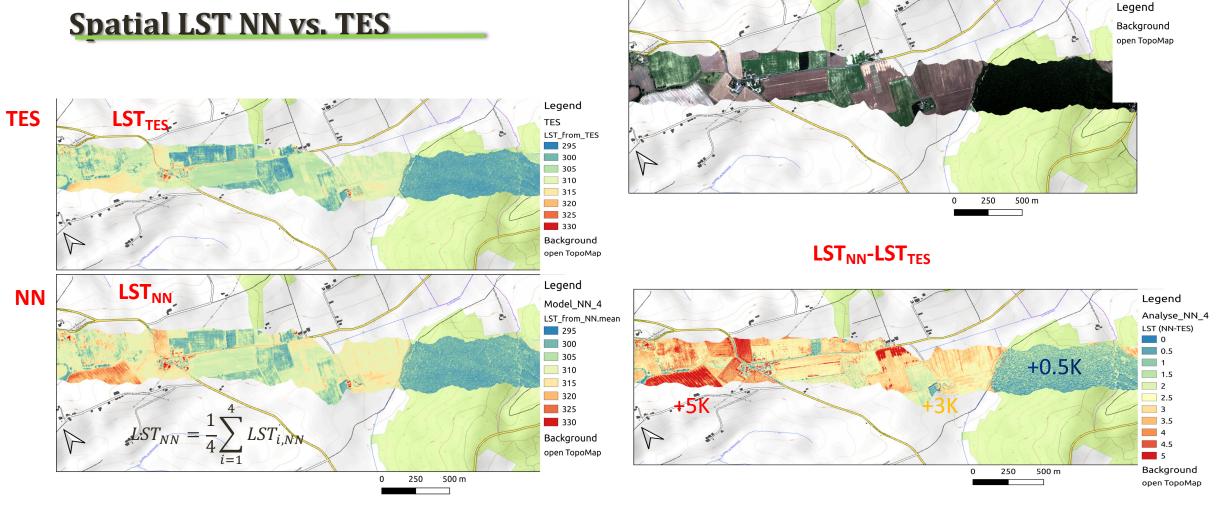
- Atmospheric compensation for VIS-NIR performed by ONERA (COCHISE & ERA5 for atmo. profiles)
- Thermal atmospherical parameters obtain with MODTRAN & ERA5 atmo. profiles



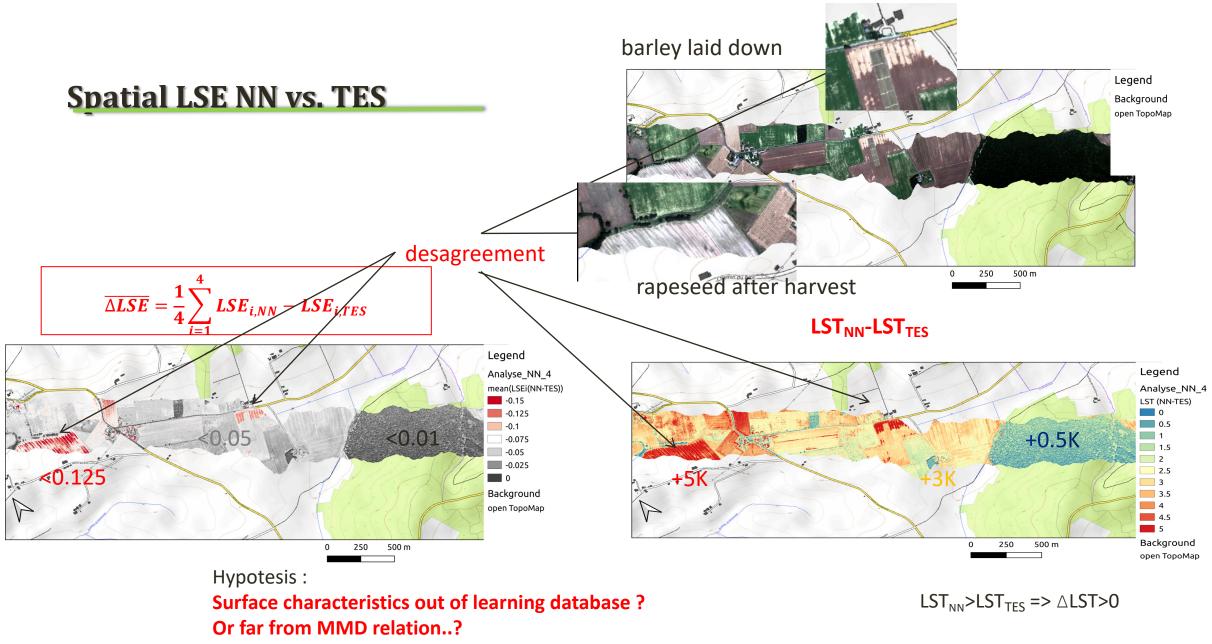
HR Thermal EO 2023 Workshop

8

AHSPECT airborn June 23 2015



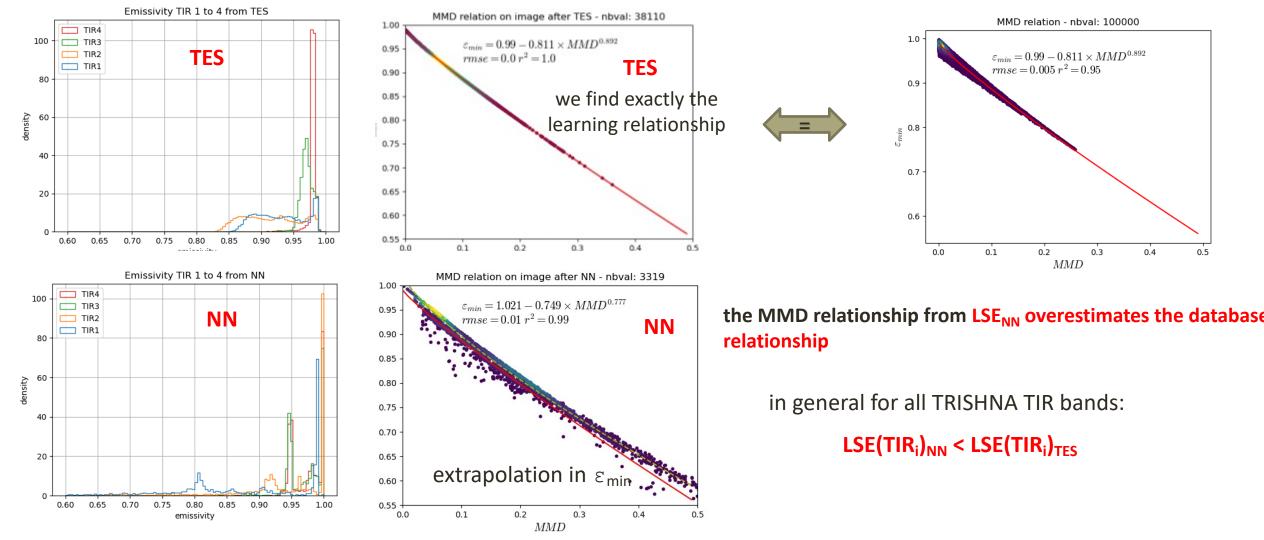
 $LST_{NN} > LST_{TES} = > \triangle LST > 0$



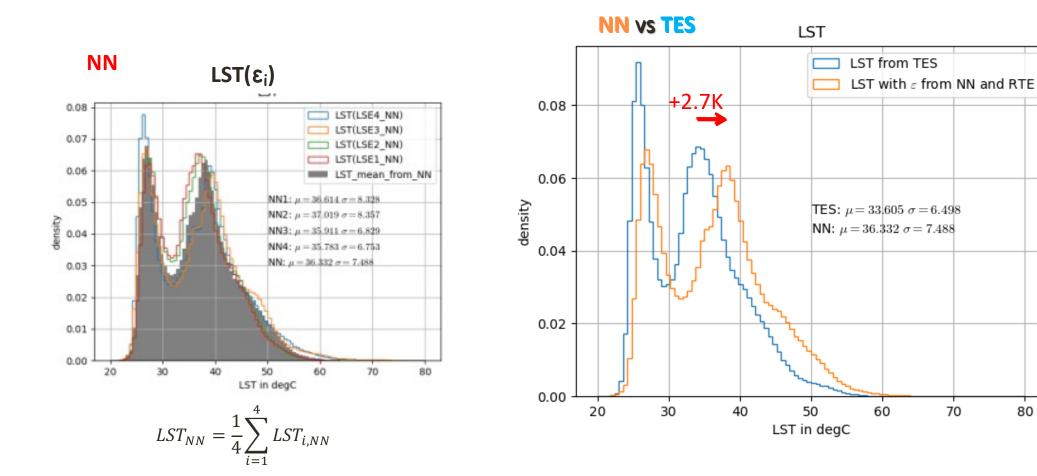
=> Need specific spectrum measurements

Comparison Between LSE Estimates

Learning database «reference»

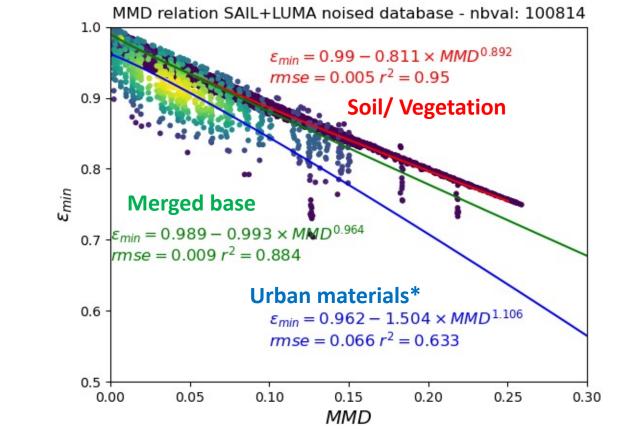


Distribution of LST in image: NN vs. TES



80

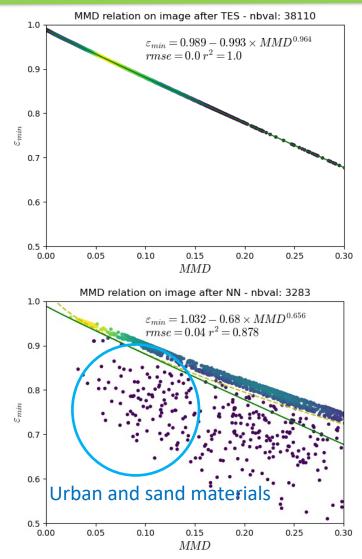
Add spectrum from Material Database (+Noise) to Svnthetic Database

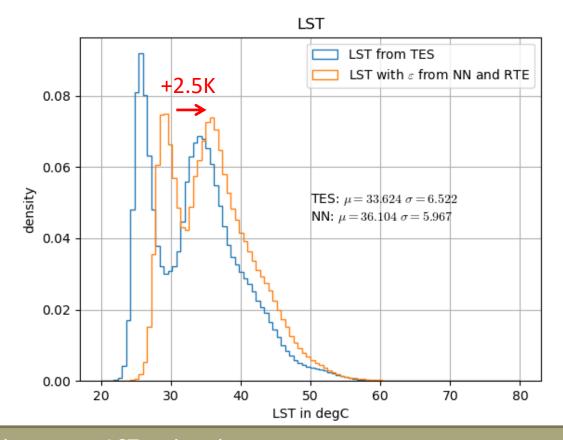


*LUMA Spectral Database (open access)

Note : MMD relation with urban material seem less linear !

Distribution of image LST: NN vs. TES after adding urban material





- Low impact on LST estimation
- No main change in TES results (MMD relation close)
- Determination of LSE Urban materials appear with NN

NN LST/LSE validity through std(LST_{i.NN})

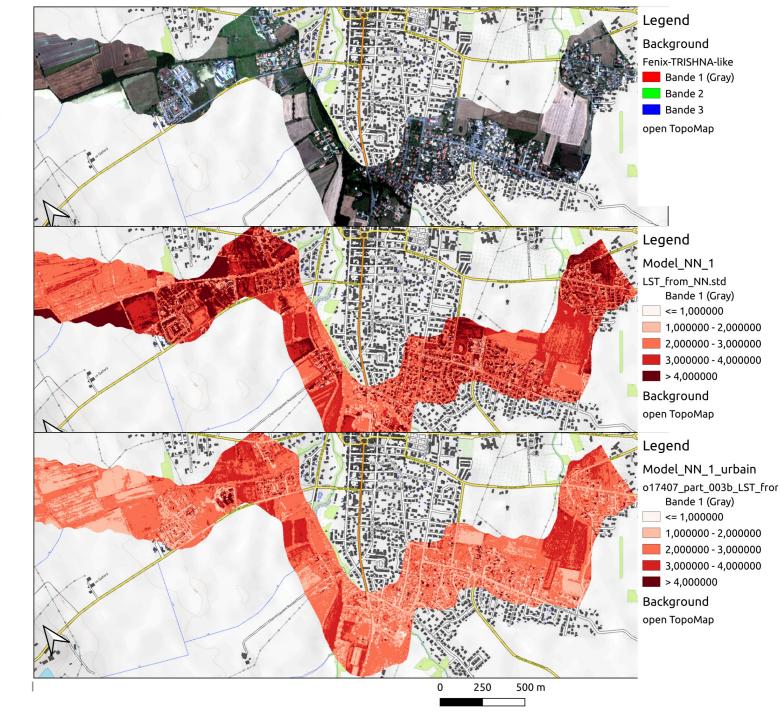
The less the std(LST_{i,NN}) is, the closest the LSE_i are to the realistic solution

> from spectral database based on vegetation only

with urban made in addition

Convergence of LST_{i,NN}

- = Improuvement !!
- = accuracy in LSE_{i,NN} value



Conclusion

- Present conclusions need validation !
- There is a way for machine/data learning approach to be more flexible and precise in LST / LSE determination ?
 - Reflectances inputs could be any optical sensor: S2, Landsat, ...

Need improvements !

- Increase learning database => more genericity / avoid extrapolation
- Increase in situ measurement => specific spectrum, CAL/VAL etc...
- Evaluate MMD relation impact on LST estimation
- Add/Need convergence approach of LSE solutions with NN to solve unique LST problem

way of DirectTES?

Toulouse, France

Thank You !

e-mail: vincent.rivalland@cnrs.fr