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• Emissivity is inseparable from the Ts estimation
• Need accurate emissivities for accurate Ts

• Emissivity is difficult to measure in laboratory and quite impossible in field
• Part of the ill-posed problem to estimate LST when multi-bands

Work context => TRISHNA mission (CNES/ISRO cooperation):

q4 thermal bands [8.65, 9.0, 10.6, 11.6] µ

Why work on emissivity estimation?
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TRISHNA NeDT = 0.2K
ΔLST<0.2K => ΔLSE<0.01 *

* Qin et al., IJRS (2001)
value for λ=10-12µm



Global context and RS products
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Solve emissivity to Ts estimation problem

• Classification Maps and Tables
• Adapt global maps from multi-band
• Function of Vegetation Indices (VIS-NIR bands)

• Simultaneous Temperature and Emissivity Separation

Nowadays, emissivity for remote sensing approach appears to be a well known parameter...
- ASTER Global Emissivity Database
- MODIS MOD21 Emissivity Product
- Spectral libraries 

However, there is still probably room for improvement.
LSEλmay varies over time, 

with humidity of materials, 
with spectral band, view and solar angle...

NASA/JPL/USGS products

Aster GED Band 12

If unique thermal band :

If multi-thermal band (≥3) :
(Gillespie et al, 1999, Vidal et al. 2022)

Try hybrid...
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A- Development	of	a	synthetic	TRISHNA-like	database

synthetic database 
of TRISHNA-like 

values
𝝆𝑩𝟏 𝐭𝐨 𝝆𝑩𝟕

𝜺𝑻𝑰𝑹𝟏 𝐭𝐨 𝜺𝑻𝑰𝑹𝟒

1st : Build a random synthetic database of continuous spectra [0.4-14𝝁𝒎] 
=> As representative as possible of natural covers (forest, crop, prairie, bare soil...).
=> From leaf spectra to vegetated natural surface spectra (pixel scale).

~100 000 values

2nd : Convert continuous spectra to TRISHNA-like reflectances (𝝆) and emissivities (𝜺 = 𝟏 − 𝝆)
based on the TRISHNA-Spectral Response Functions (SRF)

11

22 VISNIR and TIR



A-1	Learn	MMD	relation	for	TES	application
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𝛽[𝑗] =
𝜀[𝑗]

1
4∑&'( 𝜀[𝑗] j =TIR1 to  TIR4

𝜺𝒎𝒊𝒏=a+b×𝑴𝑴𝑫𝒄

𝑀𝑀𝐷 = 𝑚𝑎𝑥(𝛽[𝑗]) − 𝑚𝑖𝑛(𝛽[𝑗])

Determination of coefficients [a,b,c] of the relationship between 
the minimum emissivity (𝜺𝒎𝒊𝒏) and the Maximum-Minimum Difference (MMD) 

𝜀%&' = 𝑚𝑖𝑛(𝜀[𝑗])

Note:     no water, no snow,
no manmade material

synthetic database 
of TRISHNA-like LSE 

values
𝜺𝑻𝑰𝑹𝟏 to 𝜺𝑻𝑰𝑹𝟒

with

~<MMD>

𝜀%&'

=>Needed by Temperature Emissivity 
Separation (TES) algorithm

to constrain ill-posed problem

Natural vegetated landscape



A-2	Learn	empirical	relations	between	ρVIS-NIR and	εTIR
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► Use of the synthetic TRISHNA-like database for relationship learning 
► Use of a Neural Network approach

*Scikit-learn Python library

𝝆𝑩𝒊

3/4 for learning phase

𝜀𝑻𝑰𝑹𝒋

Neural Network = MLPRegressor*

+NDVI

𝜀𝑻𝑰𝑹𝟏

𝜀𝑻𝑰𝑹𝟑 𝜀𝑻𝑰𝑹𝟒

𝜀𝑻𝑰𝑹𝟐

1/4 for validation phase

rmse=0.006
r2=0.92

rmse=0.007
r2=0.87

rmse=0.003
r2=0.77

rmse=0.003
r2=0.82

Hypothesis: suppose visible-nir reflectances contain information to determine thermal LSE
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NN coefficients



Application: Airborne Hyperspectral Data, AHSPECT 2015 Campaign
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(ESA - EUFAR - CNRM)
- June 23 2015 / Sunny and warm day
- 2 hyperspectral sensors:

FENIX λ = [0.4:0.005:2.5] μm, 421 bands 2m spatial resolution
OWL λ = [7.5:0.01:13] μm, 551 bands

RVB Fenix with Landsat as backgroundAcquisition path lines

- Atmospheric compensation for VIS-NIR performed by ONERA (COCHISE & ERA5 for atmo. profiles)
- Thermal atmospherical parameters obtain with MODTRAN & ERA5 atmo. profiles

only 1 track used
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LSE & LST estimation flow sharts (2 approaches)

VISNIR: ρλ

TIR: Lλ TRISHNA 
SRF

ρBi

LBi

TRISHNA-like

τatm,Bi
L↓

Bi
L↑

Bi

MODTRANERA5

RTE, NN

AHSPECT
Hyperspectral

Campaign

εBi, NNNN*

Ts,RTE, NNAverage

RTE*

Ts,Bi

TES*

MMD
relation

*NN as Neural Network
*TES as Temperature Emissivity Separation
*RTE as Radiative Transfert Equation

TES

Ts,TESεBi, TES

2m

σTs,RTE, NN+

Atm. Corr.



NN

TES

𝐿𝑆𝑇$$ =
1
4
,
%&'

(

𝐿𝑆𝑇%,$$

LSTTES

LSTNN

Spatial	LST	NN	vs.	TES
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LSTNN-LSTTES

LSTNN>LSTTES => ΔLST>0

+5K +3K

AHSPECT airborn June 23 2015



Spatial	LSE	NN	vs.	TES
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LSTNN-LSTTES

LSTNN>LSTTES => ΔLST>0

+5K +3K

<0.01

<0.125

<0.05

∆𝑳𝑺𝑬 =
𝟏
𝟒
,
𝒊&𝟏

𝟒

𝑳𝑺𝑬𝒊,𝑵𝑵 − 𝑳𝑺𝑬𝒊,𝑻𝑬𝑺

desagreement

barley laid down

rapeseed after harvest

Hypotesis : 
Surface characteristics out of learning database ?
Or far from MMD relation..?

=> Need specific spectrum measurements



Comparison	Between	LSE	Estimates

we find exactly the 
learning relationship

Learning database
«reference»

=

TES TES

in general for all TRISHNA TIR bands:

LSE(TIRi)NN < LSE(TIRi)TES

NN the MMD relationship from LSENN overestimates the database 
relationshipNN

extrapolation in εmin
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Distribution	of	LST	in	image:	NN	vs.	TES

NN LST(εi)

𝐿𝑆𝑇$$ =
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𝐿𝑆𝑇%,$$

NN vs TES

2023-05-12 HR Thermal EO 2023 Workshop 12

NN vs TES

+2.7K

LST(TIRi)NN > LST(TIRi)TES

LSE(TIRi)NN < LSE(TIRi)TES



Add	spectrum	from	Material	Database	(+Noise) to	Synthetic	Database	
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Urban materials*

Soil/ Vegetation

Merged base

Note : MMD relation with urban material seem less linear !

*LUMA Spectral Database (open access)



Distribution	of		image	LST:	NN	vs.	TES	after	adding	urban	material
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+2.5K

- Low impact on LST estimation
- No main change in TES results (MMD relation close)
- Determination of LSE Urban materials appear with NN

Urban and sand materials



NN	LST/LSE	validity	
through	std(LSTi,NN)	
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The less the std(LSTi,NN) is, 
the closest the LSEi are 

to the realistic solution

from spectral 
database based on 
vegetation only

with urban made in 
addition

Convergence of LSTi,NN
= Improuvement !!
= accuracy in LSEi,NN value



Conclusion
• Present conclusions need validation !

• There is a way for machine/data learning approach to be more flexible and precise in LST / LSE 
determination ?
• Reflectances inputs could be any optical sensor: S2, Landsat, ...
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Need improvements !

• Increase learning database => more genericity / avoid extrapolation

• Increase in situ measurement => specific spectrum, CAL/VAL etc...

• Evaluate MMD relation impact on LST estimation
• Add/Need convergence approach of LSE solutions with NN to solve unique LST problem 

way of DirectTES?



Thank	You	!

e-mail: vincent.rivalland@cnrs.fr
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Toulouse, France


