

Simulating high spatial-temporal land surface temperature at scale

Henk Pelgrum, Karlis Zalite, Steven Wonink, Annemarie Klaasse

📋 10-12 MAY 2023 🛛 Q ESA-ESRIN

INTERNATIONAL WORKSHOP ON HIGH-RESOLUTION THERMAL EO

- ETLook used in FAO Water Productivity Open-access Portal (WaPOR) at different scales
- NDVI, albedo and LST are inputs to ETLook
- Image enhancement algorithms as a solution to adapt existing thermal space missions to agricultural applications
- e.g. data miner sharpener (DMS) by Gao et al. (2012)
- and implementation of this algorithm in Python as described by Guzinski et al. (2019)

Thermal sharpening

High resolution inputs

Sentinel-2 resampled to 100m

Copernicus DEM resampled to 100m

Features

- Sentinel-2 Bands 2 and Band 8 (Blue and NIR)
- Elevation related features
 - Slope
 - Aspect
 - Elevation
- Sentinel-2 based indices:
 - MNDWI (Modified Normalized Difference Water Index) (SWIR1, green)
 - NMDI (Normalized Multiband Drought Index) (NIR, SWIR1, SWIR2)
 - VARI_RED_EDGE (Visible Atmospherically Resistant Index Red Edge) (blue, red edge, red)
 - BI (bare index) (NIR, SWIR2, Red, Blue)
 - PSRI (plant senescence reflectance index) (blue, red, red edge)
- In total more than 50 features have been considered for use

Resampling of features

BI (bare soil index) feature 100 m

BI (bare soil index) feature 375 m

Pixel sampling

0.30

- 0.25

0.20

- 0.15

- 0.10

- 0.05

0.00

Based on Coefficient of Variance of multiple input features.

This is the CV of B8 of Sentinel-2

Pixels with low CV are consideredhomogeneous and will be sampledfor the regression

BT inputs

VIIRS BT 15 image Oct 6 2019

Regression

0.30

0.25

- 0.20

- 0.15

- 0.10

- 0.05

0.00

- Regression takes place in moving windows (local regression)
- And for the whole image (global regression)

Global vs Local Regression

Regression takes place in moving windows (local regression).

And for the whole image (global regression)

Residual analysis

Red: Negative residual White: Zero residual Blue: Positive residual

Weighted regression

Weights for the windows:

Green: more weights for the local regression

Purple: more weights for the global regression

Result

Result (without residual correction)

315

310

305

300

- 295

290

This image is corrected again for residuals based on a comparison with the resampled low resolution LST, to correct biases in the result

Final Result (with residual correction)

Comparison with Landsat data

VIIRS – 6 October 2019

Sharpened 100 m image

 Brightness temperature is converted to LST via Single Channel Algorithm (Munez et al., 2009)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 1, JANUARY 2009

339

Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data

Juan C. Jiménez-Muñoz, Jordi Cristóbal, José A. Sobrino, Guillem Sòria, Miquel Ninyerola, and Xavier Pons

LST to SM

Remote Sens. 2015, 7, 8250-8270; doi:10.3390/rs70708250

remote sensing

www.mdpi.com/journal/remotesensing

ISSN 2072-4292

Article

Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method

Yuting Yang ^{1,2,*}, Huade Guan ^{1,3}, Di Long ⁴, Bing Liu ⁵, Guanghua Qin ⁶, Jun Qin ⁷ and Okke Batelaan ^{1,3}

Soil moisture smoothing

Point 1 - Tile 36LXH

Applying Whittaker smoothing Weights are based on distance to cloud and viewing angle

100m vs 20m

100m

20m

100m vs 20m

100m

20m

0

1

relative soil moisture content root zone [-]

Close-up 100m

relative soil moisture content root zone [-]

Close-up 20m

0 0.2 0.4 0.6 0.8

Thank you!

Karlis.Zalite@eleaf.com

