

Assessment of Land Surface Temperature methods for future high resolution thermal missions

J.A. Sobrino, D. Skoković, R. Llorens, Y. Sun

Global Change Unit, Image Processing Laboratory, University of Valencia. SPAIN 10 May 2023

Assessment of LST algorithms for LSTM and TRISHNA missions

- LIAISE campaign
- Synthetic images
- LSTM & TRISHNA algorithms validation
- ET estimation

Algorithms

Split-window

- Three different SW structures proposed
- Becker. F & Li. Z. (BL); Wan Z, Dozier (GSW) & J. A. Sobrino & N. Raissouni (SOB)

$$T_{s} = A_{0} + P \frac{T_{i} + T_{j}}{2} + M \frac{T_{i} - T_{j}}{2}$$

$$A_{0} = a_{0} + a_{1}w$$

$$P = a_{2} + (a_{3} + a_{4}w\cos\theta)(1 - \varepsilon) - (a_{5} + a_{6}w)\Delta\varepsilon$$

$$M = a_{7} + a_{8}w + (a_{9} + a_{10}w\cos\theta)(1 - \varepsilon) - (a_{11} + a_{12}w)\Delta\varepsilon$$

Becker. F & Li. Z. Surface temperature and emissivity at various scales: Definition, measurement and related problems[J]. Remote sensing reviews, 1995, 12(3-4): 225-253.

 $T_{s} = a_{0} + (a_{1} + a_{2}\frac{1 - \varepsilon}{\varepsilon} + a_{3}\frac{\Delta\varepsilon}{\varepsilon^{2}})\frac{T_{i} + T_{j}}{2} + (a_{4} + a_{5}\frac{1 - \varepsilon}{\varepsilon} + a_{6}\frac{\Delta\varepsilon}{\varepsilon^{2}})\frac{T_{i} - T_{j}}{2}$

$$T_{S} = T_{i} + a_{0} - a_{1} (T_{i} - T_{j}) + a_{2} (T_{i} - T_{j})^{2} + (a_{3} + a_{4}w)(1 - \varepsilon) + (a_{5} + a_{6}w)\Delta\varepsilon$$

Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on geoscience and remote sensing, 1996, 34(4): 892-905.

J. A. Sobrino & N. Raissouni. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco, International Journal of Remote Sensing, 2000, 21:2, 353-366

Algorithms

Instrument Spectral Response Functions (ISRF)

LSTM and TRISHNA filter functions

Thomas H.G. Vidal et al., (2022)

LSTM and TRISHNA spatial resolution

	TRISHNA	LSTM
NADIR	57 m	37 m
Max scan angle	90 m	50 m

LSTM Mission Requirement Document

MR- OB	S-025	The mission shall measure TOA radiance with 3 (threshold) to 5 (goal) spectral bands in the TIR spectral range (8 - 12.5 μ m) for the primary mission objective, as specified in Table 4.1 below.										
MR- OB	S-030	The cent within th the FOV,	tre and spectral ne tolerance (e.g , evolution over	width of the manufactur lifetime) and	TIR spectra ring toleranc l knowledge	l bands shall es, variation specified in '	be met s within Table 4-1.					
our-band Note 2: Th Im if requ Note 3: Th	l scena he spec uired hreshol	rio tral tolera lds and go	nce of TIR band als of spectral b	ls could be re andwidth wil	elaxed to 20 Il need to be	nm and know further stud	wledge to 7 ied.					
Band #	Goal /Thr esho ld	Centre λ _{centre} (μm)	Spectral width Δλ (μm)	Tolerance λ _{centre} (± nm)	Tolerance $\Delta\lambda$ (± nm)	Knowledg e λ _{centre} (± nm)	Knowledg Δλ (± nm)					
TIR-1	G	8.6	0.18 (G)/0.30 (T)	10	10	5	5					
TIR-2	G	8.9	0.18 (G)/0.30 (T)	10	10	5	5					
TIR-9	т	9.2	0.18 (G)/0.30 (T)	10	10	5	5					

Table 4.1: TIR spectral bands. Tolerance includes manufacturing tolerance, evolution over lifetime, variation of the field of view, etc.

10

10

10

10

E

0.40 (T)

0.47 (T)

10.9

12.0

International Workshop on High-Resolution Thermal EO – 10-12 MAY 2023 – ESA-ESRIN

TIR-4

TIR-5

T

SW COEFFICIENTS ESTIMATION

Modtran simulations

- with Global Atmospheric Profiles derived from Reanalysis Information (GAPRI) (Mattar et al., 2015)
- Emissivity from ECOSTRESS library
- Surface temperature simulation range [T₀-15, T₀-10, T₀-5, T₀, T₀+5, T₀+10, T₀+15 K]

Simulations: More than 7 million cases

International Workshop on High-Resolution Thermal EO – 10-12 MAY 2023 – ESA-ESRIN

GAPRI DATASET

ERA-Interim data set

Number of profiles

Day = 4852

Land= 4714

SW COEFFICIENTS ESTIMATION

• Fitting coefficients for LSTM TIRS channels 4 (10.9 μ m) and 5 (12.0 μ m)*

SW algorithm	a0	al	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12
BL-1995	-7.1391	-0.2757	1.0256	0.2156	-0.0275	0.4621	-0.0732	4.1042	0.5355	-2.7713	0.9951	1.424	-0.3734
GSW-1996	-7.8407	1.0338	0.0743	-0.095	3.2518	-7.283	8.9925						
SOB-2000	-0.772	2.6207	0.0548	49.202	-4.8838	-172.77	29.664						

• Fitting coefficients for TRISHNA TIRS channels 3 (10.4 $\mu\text{m})$ and 4 (11.6 $\mu\text{m})^*$

SW algorithm	a0	al	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12
BL-1995	-44.4917	-0.3157	1.1822	0.1581	0.0389	0.4509	0.0427	5.5439	0.3229	-5.5226	0.2721	0.5224	-0.4493
GSW-1996	-39.5252	1.1645	0.127	-0.5212	6.8865	2.5066	0.1866						
SOB-2000	2.1723	0.0294	6.0919	21.9485	6.5685	-124.59	-6.8636						

*best combinations of channels to estimate the LST from a SW algorithm

TES COEFFICIENTS ESTIMATION

- Use of ECOSTRESS spectra library
- εmin-MMD: minimum value of the emissivity spectrum estimated as an empirical relationship of the Maximum Minimum Difference (MMD = spectral contrast) for 3 TIRS Channel configurations TRISHNA (4), LSTM (5), LSTM (3)

- Algorithms
- LIAISE campaign
- Synthetic images
- LSTM & TRISHNA algorithms validation
- ET estimation
- Conclusions

LIAISE CAMPAIGN 2021

STUDY AREA (LLEIDA, SPAIN 2021) AIRPLANE FLIGHTS (TASI/CASI) 17th - 19th - 22th - 24th and 29th JULY, 2021

- Airborne data acquired in two different locations at different overpass times.
- Flight characteristics:
 - Flight Height 3,300 m.
 - Pixel size: 4.0 m
 - ➢ Flight pass time 10-15 UTC
- Airborne images obtained with a TASI-600 sensor, a pushbroom hyperspectral thermal sensor system.
 - Spectral bands: 32, but 24 used for LST retrieval
 - Range from 8 to 11.5 microns
- TES outputs (LST & LSE) validated against in situ measurements.

CORN location 17 JULY, 2021

Alfalfa location 19-22-24 JULY, 2021

TASI LST Validation

In situ measurements used for validation of TASI TES outputs (LST & LSE)

- Multiband radiometers for surface characterization (calibrated with desviations below 0.3 K).
- Diffuse reflectance plate to address atmospheric downward effects.
- Broadband sensor 8-14 μ m, installed in a fixed station for continuous measurements.
- LST validation 1.2 K (17 July), 0.9 K (19 July)

International Workshop on High-Resolution Thermal EO – 10-12 MAY 2023 – ESA-ESRIN

TASI LSE Validation

- In situ and TASI emissivities from TES
- Comparison of most similar TASI bands to CIMEL bands: differences below 0.01 are retrieved for CIMEL bands 9.15, 10.57 and 11.29 µm and 0.02 for band 8.69 µm.

EMISSIVITY	CIMEL WAVELEGTH (µm)								
[CIMEL – TASI]	8.69	9.15	10.57	11.29					
GRASS_1707	0.020	0.003	0.001	-0.004					
CORN_1707	0.020	0.005	0.004	0.000					
ALFALFA_1907	0.007	-0.007	-0.004	0.000					
CORN_1907	0.017	0.010	0.000	0.004					
BIAS	0.016	0.003	0.000	0.000					
DEVIATION	0.006	0.007	0.003	0.003					
RMSE	0.017	0.008	0.003	0.003					

- ✤ Algorithms
- LIAISE campaign
- Synthetic images
- LSTM & TRISHNA algorithms validation
- ET estimation
- Conclusions

Synthetic Images

- From TASI level 2 images (LST and LSE), synthetic images are generated.
- ECOSTRESS library used to create LSE data from 8-13 μm as TASI can not provide values above 11.5 μm.
- TASI emissivities compared to most similar ECOSTRESS samples for Simulated LSE retrieval.

International Workshop on Hign-Resolution Linermai EU – 10-12 IVIAY 2023 – ESA-ESKIN

Synthetic Images

- TASI LST images + Simulated emissivity + Atmospheric parameters
 - Transmissivity, upward and downward radiance retrieved from ECMWF profiles ingested to MODTRAN
- Creation of TOA radiances by the application of inverse RTE and Planck's law
 - Spectral resolution of 0.02 μm

$$L_{i}^{at-sensor} = \left[\varepsilon_{i}B_{i}(Ts) + (1 - \varepsilon_{i})L_{i}^{\downarrow} \right]\tau_{i} + L_{i}^{\uparrow}$$
$$T_{S} = \frac{c_{2}}{\lambda \ln \left[\frac{c_{1}}{\lambda^{5}B_{i}(T_{S})} + 1\right]}$$

Application of LSTM filter functions to TOA radiances

Synthetic Images

Example:LSTM synthetic images for the 5 TIRS channels retrieved from the LIAISE campaign on July 19

International Workshop on High-Resolution Thermal EO – 10-12 MAY 2023 – ESA-ESRIN

- Algorithms
- LIAISE campaign
- Synthetic images
- LSTM & TRISHNA algorithms validation
- ET estimation
- Conclusions

Algorithms validation

- TES algorithm applied to LSTM and TRISHNA validated againts the TASI LST retrieved by TES
 - TASI LST images are our ground truth
- LSE from TES algorithm validated against simulated emissivity images.
 - Simulated LSE images are our ground truth
- Validation of SW algorithms applied to LSTM and TRISHNA with inputs of simulated LSE images
- Validation of SW algorithms applied to LSTM and TRISHNA with inputs of TES LSE images
 - > TASI LST images are our ground truth

TES Validation of Synthetic images for LST

TES Validation of Synthetic images for LSE LSTM 3 bands

TES Validation of Synthetic images for LSE LSTM 5 bands

Slightly better results than for the 3-band configuration

TES Validation of Synthetic images for LSE TRISHNA 4 bands

LSE RMSE range [0.010-0.023]

- TRISHNA TIRS 1 (8.6 μm) show the highest RMSE (0.023)
- In general, bands from 10 μm to 12 μm show better results in LSTM 5 and TRISHNA configurations than in LSTM 3 bands.

SW Validation of Synthetic LSTM images

- Validations of SW against the ground truth image for LSTM sensor range [0.7, 1.4] K
- Minimal variations (below 0.1 K) when LSE is ingested from TES algorithm results.

SW Validation of Synthetic TRISHNA images

 Minimal variations (below 0.1 K) when LSE is ingested from TES algorithm results.

SW validation summary

results for day 17 and 19 July

	TRISHNA		TRISHNA TES input		LSTM		LSTM 3 TES input			LSTM 5 TES input					
SW	SOB	GSW	BL	SOB	GSW	BL	SOB	GSW	BL	SOB	GSW	BL	SOB	GSW	BL
Bias (K)	-0.4	-0.2	-0.7	-0.3	-0.2	0.7	0.5	0.6	0.6	0.7	0.7	0.6	0.3	0.3	0.4
RMSE (K)	0.7	1.4	1.1	0.7	1.4	1.0	0.8	1.0	0.7	0.8	1.1	0.8	0.7	1.1	0.7

- In general, similar performance for LSTM and TRISHNA synthetic images
- SOB SW shows similar results for LSTM and TRISHNA
- higher RMSE for GSW in all cases

SW validation summary

results for day 17 and 19 July

	TRISHNA		TRISHNA TES input		LSTM		LSTM 3 TES input			LSTM 5 TES input					
SW	SOB	GSW	BL	SOB	GSW	BL	SOB	GSW	BL	SOB	GSW	BL	SOB	GSW	BL
Bias (K)	-0.4	-0.2	-0.7	-0.3	-0.2	0.7	0.5	0.6	0.6	0.7	0.7	0.6	0.3	0.3	0.4
RMSE (K)	0.7	1.4	1.1	0.7	1.4	1.0	0.8	1.0	0.7	0.8	1.1	0.8	0.7	1.1	0.7

- In general, similar performance for LSTM and TRISHNA synthetic images
- SOB SW shows similar results for LSTM and TRISHNA
- higher RMSE for GSW in all cases
- No important differences when TES emissivity inputs are applied to SW instead of simulated emissivity values.

- Algorithms
- LIAISE campaign
- Synthetic images
- LSTM & TRISHNA algorithms validation
- ET estimation
- Conclusions

ALGORITHM: S-SEBI

ENERGY BALANCE EQUATION

 $R_n = G + H + LE \longrightarrow LE = \Lambda(R_n - G)$

Evaporative fraction

$$\Lambda = \frac{T_H - T_S}{T_H - T_{LE}}$$

- T_H : Min LE temperature T_{LE} : Max LE temperature
- Conversion to daily values

$$LE_d = 24 \times 3600 \frac{\Lambda R_n C_{di}}{\lambda}$$

350 Roerink et al., (2000) 340 330 Тн ⊊ ³²⁰ ₽ 310 300 290 LE 280 0.0 0.3 0.1 0.20.4 Albedo

- G_d=0 (Seguin and Itier, 1983)
- Λ constant (Farah et al., 2004).

Sobrino et al, (2020)

S-SEBI input data

CASI BAN	IDS (1.6 m)	ALBEDO (α) ALGORTIHM							
Band number	Wavelength (nm)	$\alpha = 0.174969b_{26} - 0.146507b_{42} + 0.781783b_{42}$	$b_{47} - 0.510578b_{53} + 0.529190b_{57} + 0.016090$						
26	560.16								
41	667.12	SOLAR RAD	DIATION (Rg)						
42	674.25								
47	709.90	Retrieved from ECMWF							
53	752.68								
57	781.20								
66	845.36	EMISSIVITY (ε)	LAND SURACE TEMPERATURE (LST)						
		$\overline{\varepsilon} = \frac{\sum_{i=1}^{n} \varepsilon_i}{n}$	RETRIEVED BY TES ALGORITHM						
Spatial resan	npling of LST,	ET RESULTS PI	ROVIDED FOR:						
LSE and albe theoretical	edo at sensor nadir spatial	TASI 24 channels spatial resolution 4 m							
reso	lution	LSTM (3 & 5 channels configuration) spatial resolution 40 m	TRISHNA 4 channels spatial resolution 60 m						

Instantaneous ET: TASI and Synthetic LSTM and TRISHNA images

Instantaneous ET estimated for days:

- 19/07/2021
- 22/07/2021 •
- 24/07/2021 •
- 29/07/2021 •

Validation of results performed. against Eddy Covariance on 41.693228N, 0.930067E

Eddy Covariance data available every:

- 10 min
- 30 min

International workshop on mgn-hesolution Merina Lo TA-TE IAIVI

Instantaneous ET

SCATTER PLOTS (EDDY 30 min; N = 27)

RESULTS: Instantaneous ET

SCATTER PLOTS (EDDY 10 min; N = 71)

Daily ET

19/07/2021

22/07/2021

24/07/2021

29/07/2021

•

•

•

•

Daily ET

- All flights data from 10:30 to 14:30 UTC have been considered for conversion to daily ET values.
 - Standard deviation for average value is included in the table with typical values from 0.2-0.6 mm/day.
- Average value was used for comparison against Eddy Covariance daily ET.
- Validation results show RMSE below 0.4 mm/day

	Differences between Eddy covariance ETd (mm/day) and TASI, LSTM (3 channels,										
Eddy minus	LSTM 5 channels and TRISHNA synthetic images										
S-SEBI	TASI	LSTM (3 CHANNELS)	LSTM (5 CHANNELS)	TRISHNA	Eddy ETd						
19/07/2021	-0.56 ± 0.20	-0.17 ± 0.27	-0.07 ± 0.28	-0.11 ± 0.41	4.26						
22/07/2021	-0.20 ± 0.24	-0.07 ± 0.41	0.20 ± 0.61	-0.32 ± 0.34	5.17						
24/07/2021	-0.05 ± 0.29	0.43 ± 0.27	0.54 ± 0.28	-0.36 ± 0.49	5.36						
29/07/2021	0.06 ± 0.25	0.01 ± 0.30	0.13 ± 0.30	-0.49 ± 0.58	5.45						
BIAS	-0.19	0.05	0.20	-0.32							
σ	0.27	0.26	0.25	0.16							
RMSE	0.33	0.27	0.32	0.36							

CONCLUSIONS

- Different SW algorithms and εmin-MMD relation was estimated for LSTM & TRISHNA filters and were
 proposed for both missions.
- Synthetic LSTM and TRISHNA images of LST were retrieved using validated TASI data, ECOSTRESS emissivity spectrums and ECMWF atmospheric profiles.
- TES LST validation has shown good results for all sensors and configurations (below 1 K). When more channels are introduced in TES algorithm, better results are achieved.
 - Emissivity values show minimum differences of 0.01 independently of channels and sensor considered.
- SW validation shows, in general, uncertainties higher than TES algorithm and not important differences when LSE input comes from TES algorithm instead of simulated LSE data.
- S-SEBI algorithm validation has shown results between 55-75 W/m² with not significant improvement when different sensor or algorithm is considered.
- Conversion to daily ET values provide good agreement against in situ data, been RMSE values lower than 0.4 mm/day.